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Overview

• Discuss AI in science – now and in the future

• Based on two examples:
• Astrophysics: Exoplanet search
• Geophysics: Earth deformation, volcanoes



Victor Pankratius 3

Exoplanet Search
Transiting Exoplanet Survey Satellite (TESS)

• Near all-sky survey

• Launched April 18, 2018

• Kepler mission follow-up, stars 10-100 brighter 

• Expecting thousands of new exoplanets smaller 
than Neptune and potentially dozens that are 
comparable to our Earth

• Full frame images every 30 minutes, 200,000 pre-
selected stars monitored with 2 min cadence

• TESS processing pipeline extracts light curves

• Problems similar to future Big Data applications, 
e.g., Large Synoptic Survey Telescope (LSST) 
and others

4x  2048x2048 CCDs

[https://tess.mit.edu; https://tess.gsfc.nasa.gov; Ricker14]
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Exoplanet Search

Unfolded Time Series Folded Versions for Transit Search

5.6679..31.7844.. 41.029.. 21.775..KIC 9458613 (Kepler 33)

Normalized Flux vs. Time

Parameters

Period: 13.1756..

T

b

Transit Search: State-of-the-art

[Kovacs02, Seager11, Winn14]

à Machine learning and other methods typically applied on folded light curves [Shallue18]
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Exoplanet Search
However, there is more information in the unfolded time series.   

à Revealing irregular Transit Timing Variations (TTV) in Kepler90 system 

h
g7g2 g3 g4 g5 g6 g7h h h h

“Zooming” in on transits; red & black lines = catalog-listed periods

Normalized flux vs. days
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“Year” of Kepler90g is 
1 day longer in this 
particular transit!
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Bi-directional LSTM Networks in Exoplanet Search
A Toy Example:

Networks that are “deep” in time
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Bi-directional LSTM Networks in Exoplanet Search

BDLSTM example: learning planet transits

Applying trained BDLSTM to other light curves [training: 50 epochs, 1 second steps, 
0.5 dropout rate, until accuracy = 0.9797]
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Bi-directional LSTM Networks: Other Phenomena

Variable Star Phenomena: Learning Dwarf Nova Events
Example: V344 Lyr (Kepler 7659570)

without
“precursor”

Normalized SAP_FLUX vs. dayswith 
“precursor”

(“zoom”) (complete dataset)

Training set = 1 piece of time series Preliminary BDLSTM Prediction on Test Set (rest of time series)

Normalized SAP_FLUX vs. days (“zoom”) (complete dataset)

Note: potentially useful prediction capability based on empirically learned model
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Next: Establishing Data – Model Connections

What do humans typically do?

• Look at light curve à develop a “mental model” 
(hypothesized planetary system, related phenomenon)

• “Play” in imagination, unfold over time

• Anticipate dynamics 

• Look back at the light curve for supportive clues 

àInverse problem solved iteratively by generating multiple forward 
models + pruning those that do not exhibit the right properties

àThis process can be automated
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Next: Establishing Data – Model Connections

Programmatic Interface in Python Jupyter Notebooks

blender.org
Raytracer

Proof of concept
example:
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Generative Approach

Generate 
Physical Model Scenario: Two planets

Scenario: Irregular 
Orbiting Debris

Scenario: One planet
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Generative Approach: One Planet

Data 
Features

Model
Features

Physics

+ noise

Theoretical Domain

Empirical Domain

A “Rosetta 
Stone” linking 
models & 
theories to 
data
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Generative Approach: Two Planets

Data 
Features

Model
Features

Physics

+ noise

Theoretical Domain

Empirical Domain
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Generative Approach: Irregular Debris

Data 
Features

Model
Features

Physics

+ noise

Theoretical Domain

Empirical Domain
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Adding Inference Capabilities 

à create an “autocomplete” capability
(inference engine) for planetary systems

A system with a confirmed planet might have other planets, moons, debris disks, …

Model from empirical data
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Adding Inference Capabilities 

à create an “autocomplete” capability
(inference engine) for planetary systems

à “Guess where & what” with plausible physics

A system with a confirmed planet might have other planets, moons, debris disks, …

Model from empirical data
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Adding Inference Capabilities 

à create an “autocomplete” capability
(inference engine) for planetary systems

à “Guess where & what” with plausible physics

à Create a population of forward models and 
plausible variants (e.g., using genetic  
programming)

• Derive empirical features to look for, 
if models were describing reality

• Generate neural networks that have 
higher attention in those areas

• Test / falsify multiple theories in parallel

A system with a confirmed planet might have other planets, moons, debris disks, …

Model from empirical data
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Adding Inference Capabilities 
Generative approach facilitates
inference on other properties

Model from empirical data

Planet mass, radius, orbital parameters, 
rotation rate, obliquity 
⇒ gravitational acceleration 
⇒ atmosphere parameters 
⇒ potential mean density/rockiness 
⇒ inferences on core, magnetosphere. 

Planet surface temperature 
⇒ greenhouse warming 
⇒ thermal emission
⇒ atmospheric gases and compositions. 

Spectroscopy parameters 
⇒ biosignatures, gases
⇒ indicator factors of habitability 

Host star properties
⇒ luminosity/temperature, spectral type, activity, 

rotation rate, and flare activity
⇒ habitability



Victor Pankratius 19

Can this approach can be transferred to other domains?
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Geophysics Example
Volcanology

GPS Sensors Time Series Empirical Model Earth deformation/ inflation event

Theoretical Model

[Hibert et al., GRL ‘15][J.Li, C.Rude, D.Blair, M.Gowanlock, T.Herring, V.Pankratius. Journal of Volcanology and Geothermal Research, 2016]

Classifier for 

Mogi 
Source
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Inferring Models at Higher Abstraction Levels

2 km

0
1
2
3
4
5

10

15

20

Stromboli

1 km

14 km

0km sea level

Mt. St. Helens

Small 
magma 
chamber

Main 
magma 
chamber

km

0

3

5

7

8

Mt. Somma – Vesuvius
plumbing system

?

?

[Earle, Physical Geology, 2015, Fig. 4.12]

[Balcone-Boissard et al., 
Nature Scientific Reports 6, 
21726, 2016; Fig. 1]

[Giovanetti et al. Remote Sens., 8(4), 
2016, Fig 3]

AI Theorem Prover for Science Models / Test Case Generator for Empirically Observable Features

• Derive test cases: “this property should be observable if this model was right”
• Derive falsification cases: “property that should never be observed if this model was right”
• Derive invariants: “this predicate should always be true if this model was right” 

modify
test
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Symbolic Model Manipulation: Algebraic Approach

M1

M2

M3

M4

M5

perturb

Mi includes info on
variables
dom(variables)
constraints(variables)

trim
extend

generate

Remark: more elaborate modeling requires introduction of a type system, constraints / domain-specific rules, …

[Pankratius et al., AGU’18]
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Examples for Mi
in Geoscience

Mogi

0 0 5km 1E6

Source 
Pos X

Source 
Pos Y

Source 
Depth

Amplitude

No deformation

[Rude, Pankratius, Rongier: work in progress]

Composite

Mogi 1 Mogi 2

… …

0

Compute Interferogram
Compare with 
real-world InSAR 
satellite or UAV 
interferogramadd machine-

learned noise 
components

Test with Reality
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• Where do we go from here?
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Blueprint for “Astra”
An AI Science Assistant with Domain Knowledge
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Conclusion

• Big Data & instrument fusion in scientific applications 
à push for more automation at all levels

• We need to rethink automation in the scientific process

• Problems go beyond detection, classifications, statistics

• Automated insight generation will be key

• Vision for future: 
AI science assistants that have domain knowledge
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Thanks!

@vpankratius

pankrat@mit.edu

victorpankratius.com
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